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SUMMARY 
An efficient Euler and full Navier-Stokes solver based on a flux splitting scheme is presented. The original 
Van Leer flux vector splitting form is extended to arbitrary body-fitted co-ordinates in the physical domain 
so that it can be used with a finite volume scheme. The block matrix is inverted by Gauss-Seidel iteration. It 
is verified that the often used reflection boundary condition will produce incorrect flux crossing the wall and 
cause too large numerical dissipation if flux vector splitting is used. To remove such errors, an appropriate 
treatment of wall boundary conditions is suggested. Inviscid and viscous steady transonic internal flows are 
analysed, including the case of shock-induced boundary layer separation. 
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INTRODUCTION 

The purpose of the present paper is to develop an efficient algorithm for obtaining steady state 
solutions to  the compressible Euler and Navier-Stokes equations. The explicit procedure is easy 
to implement, but it is subject to the CFL condition which limits the size of the time step. The 
implicit approximate factorization (AF) procedure can have a larger time step than the explicit 
procedure, but the factorization introduces an error proportional to (At)3 which restricts the time 
step from being too large. In three dimensions the stability restriction is even more severe. 

The recently developed flux splitting scheme opens the door to a new class of efficient 
procedures. In 1979 Steger and Warming first proposed a flux vector splitting scheme for Euler 
equations. Van Leer suggested another form of flux splitting in 1982 which showed some 
improved properties.'*2 With flux splitting, information in the flow field will propagate in the 
natural directions, and the implicit coefficient matrix will have more diagonally dominant 
properties which enable very efficient relaxation procedures to be used.3 The implicit upwind (flux 
splitting) relaxation algorithm does not have the approximation error, so much larger time step 
can be used.' - l 5  

The flux splitting scheme inherently possesses the dissipation needed to suppress numerical 
instabilities. The dissipation is related to the eigenvalueeeigenvector structure of the governing 
equations, but it causes too large numerical dissipation as a steady contact discontinuity (e.g. 
solid wall) is en~ountered .~  The wall boundary treatment suggested in the present paper avoids 
this too large dissipation. 

The integral finite volume method is used to solve the flow field in the physical domain, so some 
unnecessary linearization error caused by co-ordinate transformation, especially for non- orthog- 
onal higly stretched and twisted meshes, will be reduced. 
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GOVERNING EQUATIONS 

The governing equations are 2D time-dependent compressible Euler and full Navier-Stokes 
equations in non-dimensional conservation form: 

au a~ ac 1 aR as 
at ax ay + - + - = a -  - + - ,  

R e (  ax a,) 
Here 

oxx = (2 + 2p)ux + 2uy,  oy, = (2 + 2p)uy + 2ux,  

1 aT 
r4= uo,, + uoXy + - -, ~r ax 

1 ar 
s4= U O x y  + uo,, + --, 

Pr ay 

c1= 0 for inviscid flow, a =  1 for viscous flow, u and u are the velocity components in the x- and 
y-directions respectively and e is the total energy per unit volume. The molecular viscosity 
is determined by the Sutherland law, and Stokes’ hypothesis is used for the bulk viscosity 
1 = -2p/3. The pressure is determined by the ideal gas law 

P = (Y - 1)Ce - p(u2 + u2)/21, 
where p is the density and y is the ratio of specific heats, taken as y = 1.4. 

Let 

P = F’i, + G’i, 

and 

The integral form of equation (1) can be written as 
n 

where Q is the volume bounded by the surface S and n is the outward pointing unit vector normal 
to the surface. The area of S is S = , / (Sz + Si) .  Let Sk = S , / S  and S;  = S,/S; so n = Ski, + Sbi,,. 

For Navier-Stokes equations there are viscous flux terms R and S with x- and y-derivatives. A 
local co-ordinate rotation is needed to align the directions of partial derivatives with the lines 
passing through the central points of adjacent cells. 
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FLUX SPLITTING 

In this study upwind differencing is implemented by splitting the convective fluxes F and G into 
positive and negative contributions. Van Leer's flux vector splitting technique is chosen since it is 
continuously differentiable through sign changes of the eigenvalues and it leads to normal- shock 
profiles with only one or two transition zones. 

The splitting of F is given by 
F(U) = F+(U)  + F-(U). 

For subsonic (M,I < 1, 

r .c 1 

wheref: = k pc[*(M, f 1)]*, and for supersonic IM,l > 1, 

F +  = F, F -  =0, M x 2  1, 

F - = F ,  Ff=O,  M,< - 1, 

where c is the local sound speed and M ,  is the local Mach number based on u. The splitting of G 
in terms of M ,  = u/c follows similarly. The Jacobian matrices of the positive split flux contribu- 
tions have eigenvalues A 2 0 and those of the nagative ones have eigenvalues 1 < 0. Since the 
time-dependent Euler equations remain hyperbolic in the subsonic and supersonic regions, the 
signs of the eigenvalues will determine the directions of information travel. From a one- 
dimensional characteristic analysis, the positive information goes downstream and the negative 
information goes upstream (see Figure 1). 

The flux crossing an interface of two adjacent cells is the normal component of the vector P in 
equation (2). Let P' be the normal component passing through the unit interface; then 

ci 
P'=P*n=(F-S:+G.S; ) - - (R-S!  + S-S;). 

Re 

The inviscid part of the flux Z = FS: + GSI should be split. So Z is first transformed into Z by a 
local rotation matrix T: 

r i  o o 0 1  

L O  0 0 

Figure 1 .  Pathline of information travel 
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The rotated velocity components U and V are normal and parallel to the interface respectively. The 
transformed flux Z is of the same form as the Cartesian flux vector and thus can be split using Van 
Leer's splitting: 

Z = Z + + Z - .  
Then 

z = ~ - l Z = ~ - l ( z +  + z - ) = z +  + z - .  

SPATIAL DISCRETIZATION 

To discretize equation (2), upwind differencing is used for the convective and pressure terms and 
central differencing for the shear stress and heat flux terms. According to the direction of 
information travel (Figure l), the positive contribution crossing surface i + 1/2 (Figure 2) should 
be determined by upstream points and the negative contribution by downstream points. 
MUSCL-type flux differencing' is used. We first extrapolate the centre-point values of U toward 
the interfaces and then obtain Z +  and Z - .  

Zi + + , j = Z + ( uL+ +, j )  + Z - CUi', +, j) . 
The conserved state variables on the upwind side of the interface are obtained by an upwind- 
biased interpolation. 

Ur++,j=Ui,j+*+[(l - k ) V + ( 1  + k)A]Ui,j, 

U:++, j= Ui+ 1,  j - i 4  [( 1 + k)V + (1 - k)A] Ui+ 1, j. 

The symbols A and V denote the forward and backward difference operators: 

AUi.j = Ui+ 1 , j  - Ui,j, vui, j = ui, j - ui- 1, j .  

The switch 4 is zero for first-order differencing and unity for higher-order differencing; k = - 1 
corresponds to the fully upwind second-order scheme and k = 1/3 to the upwind-biased third- 
order scheme. 

Application of the implicit scheme in delta form and time linearization to the conservation laws 
given by equation (2)  yields 

[I/At + dR/dU]GU"+l = R", (3) 
where GU"" = U"+' - U", At" = t"+' - t" and n is the iteration index. R" is the steady state 

Figure 2. Notation for cell i, j .  Cell boundaried at i k f and j k 4; State variables at i, j 
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residual evaluated at time level n for the Euler or full Navier-Stokes equations. 

R = - lS[ (F  -$R)S!  + ( G  - &S)S;]dS. 

In matrix notation equation (3) can be expressed as 

M 6 U = R  (4) 

where M is a large, banded, block coefficient matrix with block size of four. A line Gaus-Seidel 
iterative procedure is used for inversion. To reduce the computational work, first-order upwind 
differencing, which only leads to a block pentadiagonal matrix, is used on the left-hand side and 
third-order upwind-biased differencing is used on the right-hand side. The accuracy of the 
converged solution is controlled by the right-hand side. Then equation (4) can be rewritten as 

where the coefficients A, B, C, D and E are 4 x 4 block matrices. The coefficient matrix on the left- 
hand side is diagonally dominant and two iterations are sufficient at each time step. The 
relaxation algorithm is implemented by alternately sweeping in the backward and forward 
streamwise directions. Alternating the direction of the implicit line inversion has been proven to 
be beneficial to the full Navier-Stokes equations with highly stretched grids. It is also consistent 
with the nature of transonic and viscous separated flow. 

WALL BOUNDARY CONDITIONS 

From a truncation error analysis, the numerical dissipation of the third-order upwind-biased 
differencing is small at the interior points of a flow field.5 But large numerical dissipation occurs 
with Van Leer's flux vector splitting when a steady contact discontinuity such as a solid wall is 
encountered. The following analysis indicates that upwind dissipation is related to the treatment 
of wall boundary conditions and is not unavoidable. 

For finite volume schemes, the reflection condition has often been used to treat the flow on a 
wall boundary. A row of dummy cells located just across the wall boundary is constructed which 
is of the same size and shape as the row of cells just inside the boundary, as shown in Figure 3. For 
no-slip wall boundary conditions, 

u1 = - u2, 211 = - u z ,  P1 = P2, Tl = T2. 

Obviously the correct flux crossing the wall will be obtained by using a central differencing 
scheme. If the wall flux is determined by flux vector splitting with reflection conditions, 

C , = G : + G ; ,  

the flux obtained will be 

G, = COY 29: ~ 1 ,  d ~ i ,  01'9 

Figure 3. Reflection condition for no-slip wall boundary 
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where 

d = (1 + My)' [ I  + M y ( ?  - 1)/2) $ 1, 29: U I  $0 .  
Thus it cannot be consistent with the correct value 

G = LO, 0, P,.,, 01'. 
Similarly, for a tangent condition on the wall the flux obtained will be 

G = LO, 0, dpi, 01' 
which is still not correct. It is the error that causes the too large numerical dissipation. 

To avoid the above errors, an appropriate wall boundary condition treatment has been 
suggested herein. For inviscid flow P, is first-order extrapolated from the inner point. On the 
implicit left-hand side 

SG;':" = (BG,/BU) dun+', 
where dG,/BU is the Jacobian matrix. The boundary conditions are incorporated into the matrix 
equation (5) which leads to increased rates of convergence. For viscous flow the solution points of 
the cells just inside the wall boundary are put at the wall surface instead of the cell centre, as 
shown in Figure4. The slip or no-slip conditions can be specified at point 1. In the present 
computation no-slip conditions are set as 

u1 = u1 = 0, pi = p 2  as ap/an = 0, T ,  = T, 

for the adiabatic wall. Even though the wall boundary conditions for viscous flow are treated 
explicitly, the high convergence rate can still be reached because of the accurately imposed no-slip 
conditions. 

The wall boundary treatment given above can be used not only for the case of flux splitting but 
also for general finite volume schemes. 

GRID GENERATION AND TIME STEPPING 

The computational grid is constructed algebraically and has variable spacing in both x- and y- 
directions. Grid points are clustered near the wall to resolve large gradients in the boundary layer. 

The stretching function in the y-direction is 

y ( j )  = v ( j ) ( y ,  - yl) + Y,, j = 0, 1, 2, . , . , M ,  

v ( j )  = ( j /M)n ,  

where yu and y ,  are the y-co-ordinates of the upper and lower boundary respectively, M is the 
number of grid points in the transverse direction and a is a constant chosen to control the stretch 
of the mesh. This is a simple approach to get a high-quality mesh. 

Figure 4. Wall boundary condition for viscous flow 
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For inviscid flow the time step is determined by 

A t  = d / (  I u I  + I u (  + 24,  

where d is a constant and a is the local sound speed. At here is independent of the mesh point 
spacing Ax or Ay and is relatively uniform in the entire flow field. This is very efficient for inviscid 
flow computation. 

For viscous flow the time step is determined by the usual formulation 

A t  = CFL.Ay/(lvl + a ) .  

This is very efficient for the highly stretched grid of viscous flow. Different sizes of time steps 
varying with the local grid spacing can be obtained. 

Figure 5. Pressure contours of the calculated inviscid flow field for the converging-diverging nozzle; 25 x 1 1  H-mesh 

RESIDUAL 

l oo  L 

I , .  . . , I * *  

20 40 60 00 100 120  140 160 
TIME STEP 

Figure 6. Convergence history of the inviscid computation for the converging-diverging nozzle 
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RESULTS AND DISCUSSION 

The numerical procedures described were applied to a series of compressible inviscid and viscous 
flow problems. 

- 

- 

- 

Inviscid computational results 

The first case is a symmetric convergingcliverging nozzle. Figure 5 shows the pressure 
contours of the computed flow field. Initially the flow was at rest with pressure and temperature 
set everywhere to their total values at the nozzle entrance. The CFL number on a stretched non- 
uniform 25 x 11 mesh reached 90. Figure 6 shows the rapid convergence rate. The &-norm of the 
residual was reduced by twelve orders of magnitude in less than 160 iterations. Figure 7 is the 
computed pressure distribution which compares well with the experimental results.6 

The second case is an inlet-diffuser which involves a normal shock in the flow field. Figure 8 
shows the Mach number contours of the calculated flow field. The lower wall pressure distribu- 

o Experiment 
-Computation 

-.2 0. .2 .4 .6 .R 1. -.4 

X/L 

Figure 7. Surface pressure distribution of the converging-diverging nozzle 
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Figure 8. Mach number contours of the calculated inviscid flow field for the inlet-diffuser; 25 x 1 1  H-mesh 
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Figure 9. Lower wall pressure distribution of the inlet-diffuser 
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tion is shown in Figure 9. I t  compares favourably with the experiment given in Reference 7. Good 
shock location is obtained. The residual was reduced by four orders of magnitude in 61 iterations. 
It took only 120 s CPU time on an IBM 4381 computer. Figure 10 indicates that there are only 
two points within the shock transition area. 

The third case is a supersonic internal flow which involves an oblique shock and expanion 
waves with a wedge angle of 5” and entrance Mach number of 3. The reflecting shock intersects 
with the expansion waves. Figure 11  shows the pressure contours. For the fully supersonic flow, 
the coefficient matrix D in equation (5) is zero everywhere. The information travels only in the 
forward direction. In each time step just one forward sweep is needed for the global iteration. 
Figure 12 presents the pressure distribution of the lower surface. I t  compares well with the results 
in Reference 8. The cross symbols show that both the shock and the expansion waves have just 
one transition zone. 

Viscous computational results 

The first case of viscous flow is again the two-dimensional symmetric converging-diverging 
nozzle. Figure 13 presents the 53 x 16 H-mesh which is extremely stretched in the transverse 
direction and non-uniform in the streamwise direction. In the computation the CFL number in 
the !-direction was kept constant at 210 and the maximum CFL number in the x-direction 
reached 7.2 x lo4. The residual was reduced by four orders of magnitude in 81 iterations. 
Figure 14 shows the pressure distribution which compares well with the measured data. In the 
region just downstream of the throat (x = 0) the nozzle diverges rapidly and the flow shows a 
tendency to separate which is caused by the local pressure rising. The disturbance travels 
upstream along the boundary layer and causes a small undulation. Figure 15 shows the Mach 
number contours of the viscous flow field. 

Figure 1 1 .  I’ressure contours of the calculated inviscid Row field for the supersonic wedge duct; 36 x 27 H-mesh 
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Figure 12. Lower wall pressure distribution of the wedge duct 
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Jre 13. Computational grid for the converging-diverging nozzle in the viscous computation; 53 x 16 H-me! 

0 Ekperiment - Computation 

Figure 14. Lower wall pressure distribution of the converging4liverging nozzle calculated by the Navier-Stokes 
equations 
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Figure 15. Match number contours of the calculated viscous flow field for the convergingdiverging nozzle 

Figure 16. Pressure contours of the calculated viscous flow field for the inlet-diffuser; 60 x 17 H-mesh 

separation area 

Figure 17. Mach number contours of the calculated viscous flow field for the inlet-diffuser 
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Figure 18. Lower wall pressure distribution of the inlet-diffuser 

The second case of viscous computation is the inlet-diffuser. There is a normal shock which 
interacts with the laminar boundary layer. Figure 16 shows the pressure contours which feature 
the I-shock wave produced by the shock wave/boundary layer interaction. The flow separation is 
shown clearly in Figure 17. Figure 18 shows that the pressure distribution and the shock location 
obtained agree quite well with the experimental  result^.^ 
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For the two viscous cases above, the maximum aspect ratio of the grid on the wall reached 
5.79 x lo4. This far exceeds the limit of other algorithms whose aspect ratio of the grid is usually 
less than lo3. This is attributed to the high accuracy and good conservation of the scheme. 

CONCLUSIONS 

An efficient algorithm based on flux splitting for steady state solutions to the compressible Euler 
and Navier-Stokes equations has been described. The original Van Leer flux vector splitting has 
been extended to body-fitted co-ordinates in the physical domain so that the flow field com- 
putation can be implemented with no transformation. Different spatial discretizations on the 
implicit and explicit sides are used to reduce the computational work and to obtain solutions with 
higher-order accuracy. A line Gauss-Seidel relaxation approach is used to obtain very large time 
steps. It has been verified that the reflection wall boundary conditions cannot be used with flux 
vector splitting. The treatment of wall boundary conditions presented in the paper avoids the too 
large numerical dissipation and leads to increased rates of convergence. The algorithm is suitable 
for highly stretched and twisted grids. Computed solutions agree favourably with experiments for 
both inviscid and viscous flows, including the case of shock-induced boundary layer separation. 
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